If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6b^2+12b-7=0
a = 6; b = 12; c = -7;
Δ = b2-4ac
Δ = 122-4·6·(-7)
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{78}}{2*6}=\frac{-12-2\sqrt{78}}{12} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{78}}{2*6}=\frac{-12+2\sqrt{78}}{12} $
| b+1/2=6 | | 2(m-2)/7=m-1 | | n/3+20=18 | | 5=7+2w+2 | | -13-3x=x+9 | | |-6x|-10=-64 | | -6+3u=-27 | | -3(u-9)=7u-43 | | m+101=25 | | 8h=44 | | 10=x+50 | | 1/2a+3/4=1/2(a+3/2) | | -3(u-9)=7u-23 | | X-1/2=x+3/3 | | 77=8v-3 | | x-3=162 | | (5x/9)+1/3=2 | | -2u-18=2(u+1) | | 46=-2-6n | | (7/(x+5))+(x=3)/(x^2-25)+(8/(x-5)) | | 5.2÷c+81.9=47.2 | | 51/3+v=-12 | | c÷5.2+81.9=47.2 | | 4t=24/35 | | X/5-2(2x/5+1))=28 | | |8x+16|=12 | | t-3/4=7/8 | | 15x-7=13x+5 | | (2+x)/33=(3-x)/2 | | -3=(y-9/7) | | 11/2d=5/22 | | -3y+8(y+8)=24 |